Infrared Study of Vibrational Property and Polymerization of C\textsubscript{60} and C\textsubscript{70} under Pressure

National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan

R. Ruoff, R. Malhotra, and D. Lorents
SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025

Received: August 27, 1993*

Infrared spectra were measured for solid C\textsubscript{60} and C\textsubscript{70} to 7 GPa under hydrostatic or quasi-hydrostatic pressure at room temperature. Some vibrational modes showed negative or insensitive dependence of frequency on pressure, suggesting destabilization of C\textsubscript{60} and C\textsubscript{70} molecules by compression. In solid C\textsubscript{60} new absorption bands gradually grew with increasing pressure in association with an intensity decrease of the original bands. These spectral changes were interpreted in terms of polymerization of C\textsubscript{60} molecules. Polymerized molecules recovered at ambient pressure were converted back to the monomer by thermal annealing at 473 K.

Introduction

The structural stability and reaction activity of C\textsubscript{60} (solid) have been intensively studied. High-pressure experiments are capable of tuning intermolecular distances and provide an effective method for study of the molecular structure and bonding nature of C\textsubscript{60}. It has been shown from X-ray diffraction measurement that the spherical C\textsubscript{60} molecule is stable to at least 20 GPa under hydrostatic pressure, whereas uniaxial stress deforms the molecular shape or crystal structure even below 10 GPa.1 Conversion to diamond was reported for a recovered specimen which blew out during pressure release from 20 GPa.2 Transformation to amorphous carbon was also indicated by Raman measurement above 14 GPa.3

The vibrational modes of C\textsubscript{60} have been studied under pressure by infrared absorption4-6 and Raman spectroscopy.3 An interesting result was the “softening” in some of the intramolecular modes. One of the four IR active modes, which is characterized as a radial vibrational motion, showed a negative dependence of the frequency on pressure.4 Recent Raman measurements also showed that several bands shifted to lower frequency with pressure.3 This softening probably reflects a change in the chemical bonding within, and between, C\textsubscript{60} molecules under pressure.

We have measured the infrared spectra of C\textsubscript{60} under hydrostatic or quasi-hydrostatic condition. The purpose was to investigate the high-pressure behavior of the molecular vibrations and to explore the possibility of pressure-induced chemical reaction in the solid state. The spectra of C\textsubscript{70} were also measured. The high-pressure data on C\textsubscript{70} are of great help for understanding the characteristic bonding nature of the fullerenes molecules.

Experimental Section

High-pressure infrared spectra were measured with a gasketed diamond anvil cell.7 The sample chamber was a small hole 0.3 mm in diameter drilled in a metal gasket of Inconel X-750 approximately 0.1 mm thick. Infrared transmission spectra were recorded on a Microscope FT-IR instrument (HORIBA FT-330) with a wide-band MCT (mercury–cadmium–tellurium) detector sensitive down to 450 cm-1. Four hundred repeated measurements were accumulated to obtain a spectrum of good quality with a spectral resolution of 0.5 cm-1 for a masked measuring area of 100 × 100 μm2. Powders of pure C\textsubscript{60}, and of pure C\textsubscript{70}, were prepared by standard techniques previously reported in the literature.8 All measurements were made at room temperature, and the pressure was determined by using the ruby fluorescence method.9

Two kinds of infrared measurement were undertaken. First, infrared frequencies were measured for solid C\textsubscript{60} and C\textsubscript{70} so as to investigate vibrational properties of these fullerenes under high pressure. A flake approximately 20 μm thick was made by compressing one grain of the fullerite, and its small fragment was packed into the gasket hole. Subsequently, a pressure medium (Xe or Kr) was charged in the hole. Both media are capable of generating a quasi-hydrostatic environment in the relatively low pressure region. In addition to the measurements on solid C\textsubscript{60} and C\textsubscript{70}, infrared spectra of a Cs\textsubscript{2} solution of C\textsubscript{60} (about 3 × 10-3 mol/dm3) were measured. A thicker gasket (≈0.3 mm) was used in order to obtain sufficient absorption intensity for the solubilized C\textsubscript{60}.

Second, the dependence of infrared absorption intensity on applied pressure was measured for solid C\textsubscript{60}. Before compression, a reference spectrum was taken for the solid C\textsubscript{60} placed in the gasket hole of the opened diamond cell. The specimen was then packed with a methanol–ethanol (4:1) mixture and compressed in the closed cell to the desired pressure. After holding the pressure for 1 day, the cell pressure was reduced to ambient. The opened cell was heated in a vacuum oven at 340 K in order to evaporate the pressure medium. An infrared spectrum was again measured for the recovered specimen and compared with the reference spectrum.

Results and Discussion

Frequency Shift in Solid C\textsubscript{60} and C\textsubscript{70}. The pressure dependence of the infrared frequencies was obtained for the four infrared active modes of C\textsubscript{60} (1\textsubscript{E}g, 2\textsubscript{F}g, 3\textsubscript{F}u, and 4\textsubscript{F}u6) in a quasi-hydrostatic condition up to 6 GPa. The present results agree with the previous infrared data measured to 19.5 GPa by direct compression of powdered C\textsubscript{60}.6 All absorption bands broadened and weakened substantially as the pressure was increased, so that further measurement beyond 6 GPa was prevented. No indication of a phase transition was observed. New bands, however, appeared in the frequency region from 600 to 800 cm-1, suggesting molecular deformation or chemical reaction. This remarkable spectral change will be described in detail in the following sections.

In the Cs\textsubscript{2} solution of C\textsubscript{60}, three of the four bands were observed up to 1 GPa. The 4\textsubscript{F}u5 band expected to appear around 1500 cm-1 overlapped with the strong band of the stretching mode of Cs\textsubscript{2}. The 2\textsubscript{F}g and 3\textsubscript{F}u bands shifted to higher frequency, giving
derived pressure coefficients, $d\omega/dp = 3.9$ and $3.7 \text{ cm}^{-1}/\text{GPa}$, respectively, whereas the 1F_{1u} band shifted to lower frequency with a pressure coefficient of $-1.0 \text{ cm}^{-1}/\text{GPa}$. Although the frequencies of 1F_{1u} and 2F_{1u} modes in solution state were about 2 cm^{-1} higher than those in solid state in the pressure range measured, no significant difference was observed in the pressure dependence. The 3F_{1u} mode showed the same peak position and pressure dependence as those of the solid state. It was observed by visual inspection with a microscope that C_{60} crystals separated out from C_{60} solution at 1 GPa. This prevented us from proceeding with further measurement. In the measured pressure region, solidification was not observed in C_{60} which is known to crystallize at 1.3 GPa and room temperature.

For solid C_{60}, only 11 bands of the 31 modes ($10A_{2u} + 21E'$) predicted as infrared active were observed. The observed band frequencies of C_{60} are plotted as a function of pressure in Figure 1. The frequencies, whose ambient-pressure values agree well with those reported previously, change linearly with pressure. It is notable that three bands originally located at 578, 673, and 795 cm^{-1} (filled circles in Figure 1) shift to lower frequency, as was the case for the lowest frequency 1F_{1u} mode of C_{60}. In solid C_{60} however, the lowest frequency band at 458 cm^{-1} shifts to slightly higher frequency. Besides the shift of the band positions, no significant change was observed in the spectra. This was in contrast to C_{60}, which showed appearance of the new absorptions growing with increasing pressure. An order–disorder transition associated with the molecular reorientation has been observed in solid C_{60} below 1.2 GPa by powder X-ray diffraction experiment. In our infrared measurement no discontinuous change in frequency was found at the corresponding pressure region. Pressure coefficients $d\omega/dp$ obtained by fitting the $\omega-p$ relation with a linear equation and mode Grünisen parameters $\gamma_\omega = K_0 d \ln d \ln d \ln \omega$ calculated by using the bulk modulus $K_0 = 18.1 \text{ GPa}$ of solid C_{60} are summarized in Table 1.

Table 1: Infrared Frequencies (ω_ω) at Ambient Pressure, Pressure Coefficients ($d\omega/dp$), and Grünisen Mode Parameters (γ_ω) for Solid C_{60}

<table>
<thead>
<tr>
<th>ω_ω (cm$^{-1}$)</th>
<th>$d\omega/dp$ (cm$^{-1}$/GPa)</th>
<th>Huang et al.a</th>
<th>γ_ω b</th>
</tr>
</thead>
<tbody>
<tr>
<td>458</td>
<td>0.54</td>
<td>2.8</td>
<td>0.020</td>
</tr>
<tr>
<td>534</td>
<td>2.50</td>
<td>2.7</td>
<td>0.085</td>
</tr>
<tr>
<td>566</td>
<td>3.80</td>
<td>3.4</td>
<td>0.121</td>
</tr>
<tr>
<td>578</td>
<td>-0.20</td>
<td>-0.4</td>
<td>-0.006</td>
</tr>
<tr>
<td>642</td>
<td>0.28</td>
<td>0.3</td>
<td>0.006</td>
</tr>
<tr>
<td>673</td>
<td>-0.39</td>
<td>-0.5</td>
<td>-0.010</td>
</tr>
<tr>
<td>795</td>
<td>-0.44</td>
<td>-0.6</td>
<td>-0.010</td>
</tr>
<tr>
<td>1133</td>
<td>3.10</td>
<td>0.7</td>
<td>0.050</td>
</tr>
<tr>
<td>1414</td>
<td>5.44</td>
<td>-7.6</td>
<td>0.070</td>
</tr>
<tr>
<td>1430</td>
<td>5.38</td>
<td>1.3</td>
<td>0.068</td>
</tr>
<tr>
<td>1493</td>
<td>3.01</td>
<td></td>
<td>0.036</td>
</tr>
</tbody>
</table>

aReference 5. bFor C_{60} were evaluated by using a bulk modulus of $K_0 = 18.1 \text{ GPa}$ in solid C_{60} (ref 1).

Figure 2. $\gamma_\omega-\omega_\omega$ relation in solid C_{60} and C_{60} (O, IR for $C_{60};$; Raman for C_{60}; $*$, IR for $C_{60};$ Raman for C_{60}). The γ_ω for Ramn bands were evaluated by using the previous Raman data.3

The mechanism of the softening of the radial mode in C_{60} remains unclear. Evidently the interaction of the C_{60} molecule with its nearest neighbors change as a function of pressure in such a way that the radial normal mode frequency is lowered. However this is not an interaction which is specific to a $C_{60}-C_{60}$ nearest neighbor force field, because the frequency of the purely tangential 1F_{1u} mode also decreases in the dilute C_{60} solution. The observed pressure coefficients $d\omega/dp$ of C_{60} in C_{60} corresponded well with those for the pure C_{60} solid. The C_{60} molecules in the dilute C_{60} solution should be surrounded almost entirely by C_{60} solvent molecules, on average. Apparently the influence of nearest neighbor molecules on C_{60} vibrational frequency shift is quite similar whether the nearest neighbor molecules are C_{60} or C_{60}. This presents, we feel, a clue for future theoretical treatments, which are needed for a deeper understanding of the experimental data.

We speculate that the stress tensor which are individual C_{60} molecule experiences as a function of pressure must be quite similar for C_{60} in C_{60}, and for C_{60} solid, in the pressure range studied. The face-centered cubic (fcc) C_{60} is an isotropic solid, and the stress tensor for hydrostatic loading is also isotropic. At very low applied pressure the C_{60} solution remains a liquid, and...
between the compressed and phototransformed specimens is fairly
good, as shown in Table II. A mass spectrum of the phototrans-
formed C₆₀ showed formation of a series of cross-linked fullerenes
(C₆₀ₓ). A similar polymerization likely occurs in compressed
solid C₆₀, where the adjacent molecules get sufficiently close to
form cross-linking bonds. Our observations of recovery of C₆₀,
band intensities and removal of the new bands by thermal
annealing at 473 K are indicative of destruction of cross-linking
bonds and reproduction of the C₆₀ monomer. The measured large
reduction in intensity of the characteristic C₆₀ monomer bands
shows that the polymerization is significantly accelerated at high
pressures. Further study in the degree of polymerization and its
pressure dependence is needed to clarify the reaction mechanism.

Acknowledgment. Part of this work was conducted in the
program "Advanced Chemical Processing Technology", consigned
to the Advanced Chemical Processing Technology Research
Association from the New Energy and Industrial Technology
Development Organization, which is carried out under the large-
scale project administered by the Agency of Industrial Science
and Technology, the Ministry of International Trade and Industry,
Japan.

References and Notes

237.
(3) Snooke, D. W.; Rapits, Y. S.; Syassen, K. Phys. Rev. 1992, B45,
14419.
(5) Huang, Y.; Grisen, D. F.; Butler, I. S. J. Phys. Chem. 1991, 95,
5723.
1992, 188, 168.
(8) Kraschmer, W.; Lamb, L. D.; Fostipoulos, K.; Huffman, D. R.
Phys. 1975, 46, 2774.
(THEOCHEM) 1989, 202, 169.
(12) Cox, D. M.; Behal, S.; Dikko, M.; Gurn, S. M.; Graene, M.; Hau,
(13) Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J.; Golden,
W.; Seki, H.; Brown, C. A.; de Vries, M. S. Chem. Phys. Lett. 1991, 179,
181.
(14) Kawamura, H.; Kobayashi, M.; Akahama, Y.; Shinozaki, H.; Sato,
(15) Kojima, J.; Fukumoto, N.; Kurashashi, M. Bunseki Kagaku 1986, 35,
799.
Wang, Y.; Lee, W.-T.; Bi, X.-X.; Ekland, P. C.; Cornett, D. S.; Duncan, W.