Excited Triplet and Reduced Forms of C₆₄

Geneviève Sauvé and Prashant V. Kamat*
Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556

Rodney S. Ruoff
Molecular Physics Laboratory, SRI International, Menlo Park, California 94025

Received: November 10, 1994®

The triplet excited state behavior of C₆₄ has been probed by the triplet–triplet energy transfer method using pulse radiolysis generated biphenyl triplets in benzene. The triplet excited state has a weak absorption in the UV (difference absorption maxima at 310 and 345 nm) but no significant absorption in the visible. The rate constants for energy transfer from CBP* and C₆₀* are 4 × 10⁷ and 4.7 × 10⁹ M⁻¹ s⁻¹, respectively. Triplet excited state properties of C₆₄* are compared with other fullerenes. A photocatalytic method has also been successfully employed to reduce C₆₄ in a UV-irradiated colloidal TiO₂ suspension.

Introduction

The photophysical, photochemical, and photoelectrochemical properties of fullerenes, C₆₀ and C₇₀, have been studied extensively over the past couple of years [see, for example, refs 1–26]. The long-lived triplet excited state and absorption in the visible makes fullerenes suitable for photosensitization, singlet oxygen production, and solar energy conversion. Doped polymer films have also been shown to possess photoconductive properties. There is now increasing interest in studying the physical properties of larger fullerenes, C₇₆, C₇₀, C₇₂, C₈₄, etc. However, little is known regarding the excited state behavior of these larger fullerenes.

C₆₄ is one of the larger fullerenes produced in abundant quantities during the synthesis of C₆₀. Unlike C₆₀ and C₇₀, C₆₄ exists in two isomers, D₂ and D₅₆, in the ratio 2:1.²⁷–²⁸ The visible absorption spectra of C₆₄²⁹ and the reduction potentials of C₆₄²⁰–³¹ have already been reported. At least six reversible reductions have been characterized using cyclic voltammetry.²⁷–³¹ Although distinctively different electronic properties of these two isomers were observed in electrochemical and ESR studies, the separation of the two isomers of C₆₄ has not yet been achieved. Consequently, a mixture of the two isomers has been used in this investigation. We report here, for the first time, experimental results which characterize triplet excited state properties of C₆₄. We also report the photoelectrochemical reduction of C₆₄ in colloidal TiO₂ suspension.

Experimental Section

Materials. Mass-pure C₆₄ was obtained via selective solvent extraction followed by HPLC chromatography with a semi-preparative Buckyclutcher column (Regis) run in recycling mode. Details of the selective solvent enrichment techniques will be published later.²⁶ The purity of the sample was checked by surface analysis via laser ionization (SALI) mass spectrometry (MS), a technique that has been used extensively at SRI International for analysis of fullerenes samples.²⁷b SALI-MS showed that the fullerene purity exceeded 99.5%, with the only impurity peaks belonging to C₈₂ and C₉₆; in particular, no C₆₀ or C₇₀ was present in the SALI-MS spectrum obtained. The sample was washed with diethyl ether three times and then dried for a period of 48 h in a vacuum oven held at 343 K.

Optical Measurements. Absorption spectra were recorded with a Perkin-Elmer 3840 diode array spectrophotometer. Nanosecond laser flash photolysis experiments were carried out with a Laser Photonics PRA/Model UV-24 nitrogen laser system (337 nm, 2 ns pulse width, 2–4 mJ/pulse) with a front face excitation geometry. A typical experiment consisted of a series of 2–3 replicate shots per single measurement. The average signal was processed with an LSI-11 microprocessor interfaced with VAX-3400 computer. Details of the experimental setup can be found elsewhere.²⁷b Pulse radiolysis experiments were performed at 296 K with the Notre Dame 7 MeV ARCO LP-7 linear accelerator, the operating conditions of which are described elsewhere.²⁷b The dose per pulse was in the range 1–5 Gy, determined by thiocyanate dosimetry. The solutions were saturated with nitrogen or oxygen and flowed continuously during the experiment.

Results and Discussion

The absorption spectrum of C₆₄ in toluene is compared to that of C₆₀ in Figure 1. While the solution of C₆₀ is purple, the solutions of C₆₄ exhibit yellow-green color. The C₆₄ exhibits significantly stronger absorption in the visible. The details of the structural and electronic properties of the C₆₄ are presented elsewhere.²⁰ Direct excitation of C₆₄ via nanosecond laser flash photolysis using 337 nm excitation wavelength (2 mJ/pulse) did not yield a conclusive technique of C₆₄*: the transient absorbance in the UV–visible region was very low (<0.002).³³ This observation indicates that either the intersystem crossing efficiency for the C₆₄* generation is very low or the triplet excited state has a very low extinction coefficient in the UV–visible region. An alternate route of triplet–triplet energy transfer was therefore employed to generate C₆₄*.

Pulse Radiolysis Experiments. Radiolysis of a benzene solution containing a high concentration of biphenyl is known to yield relatively long-lived excited biphenyl triplet with absorption maximum at 360 nm. The resulting biphenyl triplets are capable of transferring energy to a molecule with a lower triplet energy. This technique has been successfully used by us and others to generate C₆₀* and C₇₀* ⁶₉,¹⁰ The absorbed doses were in the range 4–20 Gy/pulse. The experiments were carried out with a continuous flow of the sample solution.

* To whom correspondence should be addressed.
The bimolecular rate constant for the quenching of biphenyl triplet by C₈₄ was 4 × 10⁹ M⁻¹ s⁻¹. This value, which is close to a diffusion-controlled process, is slightly lower than the values of 1.7 × 10¹⁰ and 2.0 × 10¹⁰ M⁻¹ s⁻¹ for energy transfer to C₆₀ and C₇₀, respectively. In the absence of C₈₄, the bimolecular rate constant for the quenching of C₆₀ by C₈₄ is determined from the slope of this plot to be 4.7 × 10⁹ M⁻¹ s⁻¹. This value is similar to the one reported for the quenching of C₆₀ by C₇₀ (2.4 × 10⁹ M⁻¹ s⁻¹). The nearly diffusion-controlled quenching rate constant observed in the present set of experiments suggests that the triplet energy of C₈₄ is lower than that of C₆₀. Strong ground state absorption of C₆₀ and C₈₄ and weak absorption of C₇₀ limited the resolution of transient absorption measurements in the UV region.

Comparison of C₆₀ Properties with Other Fullerenes. The absorption properties of C₆₀ are compared with other fullerene triplets in Table 1. The only spectral features in the difference absorption spectrum of C₆₀ that are prominent are the absorption bands at 310 and 345 nm. The absence of a major absorption band of triplet excited C₈₄ in the visible suggests a close match between the ground and excited state spectra. Of all the fullerenes that have been investigated to date, only triplet C₆₀ is known to exhibit a prominent 740 nm absorption band with a significantly higher extinction coefficient.
of 14 000 M_2 cm^−1. However, triplet C_60 exhibits relatively weak absorption bands in the visible. These observations suggest that visible absorption bands are less prominent for triplet excited states of higher fullerenes. However, all of these excited fullerenes are long-lived with intrinsic decay lifetimes greater than 100 μs. Self-quenching processes such as T−T annihilation and ground state quenching often accelerate the deactivation of the triplet excited state. Another interesting aspect involves energy transfer between two different fullerene molecules. The bimolecular rate constant for the quenching of 3C_60 by a fullerene molecule increases with increasing number of carbon atoms in the unexcited fullerene molecule (Table 1). If we attribute this increase in the quenching rate constant to the increasing energy gap between the donor and acceptor triplets, it is evident that larger fullerenes have lower triplet energies. A decrease in the energy of the lowest unoccupied molecular orbitals of the fullerenes has also been observed in the electrochemical reduction of larger fullerenes.76

Reduction of C_64 in Colloidal TiO_2 Suspension. Controlled reduction of fullerenes has also been a topic of immense interest in recent years. Up to six reversible reductions have been reported for C_64.27b,31 We have now employed a photoelectrochemical approach to reduce C_64 in preirradiated colloidal TiO_2 suspension (reactions 3 and 4).

\[
\text{TiO}_2 + \text{hv} \rightarrow \text{TiO}_2 (h + e) \rightarrow \text{TiO}_2 (h + e) \\
\text{TiO}_2 (e) + C_{64} \rightarrow \text{TiO}_2 + C_{64}^{-}
\]

The ability of semiconductor clusters to carry out controlled one-electron reduction of C_60 and C_70 under UV excitation has been demonstrated earlier.25,26 The semiconductor TiO_2 should be an excellent choice to carry out one-electron reduction of C_64 since the energy of its conduction bands (E_{CB} = −0.5 V vs NHE at pH 7) thermodynamically favors one-electron reduction (E^{0}(\text{C}_64/\text{C}_{64}^{-}) ≈ −0.08 V vs NHE).

A deaerated suspension of colloidal TiO_2 (10 mM) in 50/50 toluene/ethanol was preirradiated with a 1000 W xenon/mercury lamp to induce charge separation followed by trapping of holes (h+) and electrons (e−) within the semiconductor colloids (reaction 3). The solution turned blue as the UV irradiation was continued for 3−5 min. This blue coloration of the colloidal suspension is a characteristic feature of trapped electrons in TiO_2 colloids.36 An aliquot (40 mL) of deaerated C_64 solution in toluene (2 × 10^{-4} M) was then added to both sample and reference cells (total volume 1 mL). Absorption spectra recorded before and after the addition of C_64 are shown in Figure 4. A cell containing only 50/50 toluene/ethanol solvent mixture was used as the reference. The spectrum recorded after the addition of C_64 (spectrum b in Figure 4) shows a decreased absorption at 700 nm and an increased absorption around 330 nm. The decrease in the absorption at 700 nm indicates that the trapped electrons are scavenged by C_64 to produce C_{64}^{-} (reaction 3). It should be noted that the trapped electrons in a preirradiated TiO_2 suspension are relatively long-lived and do not disappear without the addition of C_64.

The spectral features of C_{64}^{-} were further probed by subtracting the contribution of TiO_2 absorption to the overall spectrum. The difference absorption spectra recorded after each incremental addition of C_64 solution show increased absorption at 330 nm with increasing C_{64}^{-} concentration (inset of Figure 4). Bleaching around 300 nm further confirms the disappearance of C_{64}^{-} to form C_{64}^{-}. The disappearance of C_{64}^{-} cannot be attributed to direct photolysis of C_64 since the TiO_2 suspension was irradiated with UV light before the addition of C_64. These observations demonstrate the feasibility of carrying out one-electron reduction of C_{64} with semiconductor colloids. Further experiments are underway to explore the role of excited C_{64} in its participation in the photochemical reactions.

Acknowledgment. The work described herein was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy. This is Contribution No. NDRL-3734 from the Notre Dame Radiation Laboratory. We gratefully acknowledge Filippe Chibante for purifying C_{64} and Chris Becker for running the SALLI-MS analysis of the C_{64} sample used in this study.

References and Notes

Excited Triplet and Reduced Forms of C₆₄

(33) A caution regarding the contribution from organic impurities that might have associated with C₆₄ during the extraction/separation process: When a commercially obtained sample of C₆₄ was excited with 308 nm laser pulse, two different transients with absorption maxima at 445 and 350 nm were observed. These absorption peaks disappeared when the excitation wavelength was changed to 337 nm.

JP9427140