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Abstract—We demonstrate a 500-nm graphene frequency dou-
bler with a record 3-GHz bandwidth, exceeding the device transit
frequency by 50%, a previously unobserved result in graphene, in-
dicating that graphene multiplier devices might be useful beyond
their transit frequency. The maximum conversion gain of graphene
ambipolar frequency doublers is determined to approach a near
lossless value in the quantum capacitance limit. In addition, the
experimental performance of graphene transistor frequency de-
tectors is demonstrated, showing responsivity of 25.2 uA/uW. The
high-frequency performance of these gigahertz devices is enabled
by top-gate device fabrication using synthesized graphene trans-
ferred onto low capacitance, atomically smooth quartz substrates,
affording carrier mobilities as high as 5000 cm?/V-s.

Index Terms—Bandwidth, doubler, graphene, quartz, radio
frequency devices, transit frequency.

I. INTRODUCTION

RAPHENE, a 2-D sheet of carbon atoms arranged
G in a honeycomb lattice [1], has attracted significant
interest as a channel material for high-frequency analog elec-
tronics [2]-[14]. This can be attributed to its high-carrier mo-
bility [15], large current densities [16], thermal and mechanical
stability [17], [18] and intrinsic ambipolar electron—hole sym-
metry. A unique device application of its ambipolar property
is for frequency translation where input signal frequencies can
be translated up to higher frequencies (frequency multipliers)
often in integer multiples or translated down to zero or baseband
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Fig. 1. Transit frequency comparison for different high-frequency FETs versus
gate length. The symbols are experimental data points and the dashed lines are
the projected mobility-scaled performance of GFETs. 300 GHz f; is the fastest
experimental GFET to date [10]. For terahertz operation, higher mobility scaled
GFETs (dashed lines) offer the greatest prospects at moderate gate lengths.
Figure adapted from Schwierz [11]. THzf; values are also confirmed by quantum
mechanical simulations that include velocity saturation [20].

frequencies (frequency detectors) [2]-[5]. In recent years, fre-
quency multipliers have received renewed attention particularly
for terahertz (~100 GHz-1 THz) applications driven by strate-
gic interests in security, imaging, short-range communication,
and molecular spectroscopy [19].

Graphene field-effect transistors (GFETSs) appear to be the
most promising transistor device for terahertz applications ow-
ing to their high mobility which yields the highest cutoff or
transit frequencies beyond the reach of conventional solid-state
transistors as shown in Fig. 1. In this paper, we demonstrate
for the first time a GFET operating ~50% beyond its transit
frequency f;. This previously unobserved result indicates that
graphene devices employing the ambipolar property might be
even more useful for high-frequency electronics than previously
thought, potentially providing useful electronic performance be-
yond the experimental 300 GHz and predicted terahertz device
transit frequencies [10], [20].

The fabricated GFET with 500-nm channel length and biased
at the Dirac point for frequency doubling achieves a maximum
output power of approx. —23.3 dBm and record bandwidth of
3 GHz, 2x higher than the state-of-the-art GFET frequency
doubler [2]. The 3-GHz frequency bandwidth exceeds the mea-
sured 2-GHz device f; by 50%, a new achievement for graphene
devices. Operation beyond f; is not entirely unexpected since
the graphene frequency multiplier offers no gain. Nonetheless,
this is the first experimental observation of graphene circuit
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Fig.2. (a) Optical image of graphene on quartz showing an even color indica-
tive of uniform coverage. (b) Raman spectroscopy of the CVD grown graphene
used in this work confirming the monolayer structure. /nset: Local Raman map
of the unique monolayer 2-D peak showing uniform graphene coverage over
700 um? area that enabled the fabrication of arrays of devices.

bandwidth exceeding the device transit frequency. The 3-GHz
multiplier bandwidth is afforded by transferring CVD-grown
graphene onto low capacitance, atomically smooth quartz sub-
strates which is an ideal choice for low loss and temperature
stable high-frequency electronics [21]. GFET carrier mobilities
as high as ~5000 cm?/V-s were observed, but can be as low as
~500 cm?/V s due to the resist residue of current solution-based
transfer methods which lead to uncontrolled impurity and defect
scattering [22], [23] as indicated by a relatively flat mobility—
temperature profile [24], [25]. We have included supplementary
downloadable material, which includes temperature dependent
mobility data. Remarkably, even with a low mobility GFET,
record gigahertz performance is achieved.

Furthermore, we address the most pressing question regard-
ing the maximum conversion gain of GFET ambipolar fre-
quency multipliers, uncovering an upper limit of near lossless
frequency doubling in the quantum capacitance limit. In addi-
tion, the experimental performance of GFET frequency detec-
tors was evaluated, showing current responsivity (Alp /APy, ) of
~25.2 pA/mW. The results reported here collectively indicate
that optimized GFETSs can enable high performance GHz and fu-
ture terahertz systems via frequency translation and processing,
an area of growing significance.

II. DEVICE FABRICATION AND PERFORMANCE

A. Graphene Synthesis

Large-area graphene films were synthesized on Cu substrates
using a low-pressure CVD process as in [26]. After growth, the
graphene was transferred to a single-crystal ST-cut quartz wafer
by the process described in [27]. Fig. 2(a) shows an optical
image of the monolayer graphene that has been transferred onto
quartz, where the even color is indicative of uniform graphene
coverage. As shown in Fig. 2(b), the Raman spectrum of the
transferred graphene reveals a 2D peak at 2679 cm™! with a
full width at half maximum (FWHM) ~24.5cm™!, indicating
monolayer graphene [28]-[30]. A peak at ~1160cm ™!, due to
the quartz substrate, is also observed [31]. The inset of Fig. 2(b)
shows the Raman mapping corresponding to the intensity of the
2-D peak, which further validates the uniformity of the graphene
film over a 700 pum? area, enabling the fabrication of arrays of
devices.
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Fig. 3. (a) Illustration of top-gated graphene device fabrication process.
(b) SEM image of a completed 3 x 3 array of GFETs fabricated with the process
illustrated in (a). (c) Optical image of a typical GFET from the 3 x 3 array with
an arrow indicating the location of a patterned graphene sheet underneath the
active device region.

B. Graphene Transistor Fabrication

GFETs were fabricated as illustrated in Fig. 3(a) using
electron-beam lithography (EBL) and standard cleanroom pro-
cesses. Charging effects of the insulating quartz substrate during
EBL processing were avoided by using a water-soluble conduct-
ing polymer (Espacer 300Z from Showa Denko K.K.). After
transfer of the graphene to the quartz substrate, an active region
was defined by EBL and oxygen plasma etching. A second EBL
step was performed to define metal contacts for the source and
drain of a ground-signal-ground (GSG) structure, followed by
a 50-nm thick Ni e-beam evaporation and lift-off process. The
gate dielectric consists of a 1.5-nm thick Al nucleation layer,
followed by a 20-nm thick Al,O3 layer deposited by atomic
layer deposition (ALD) [32]. A 50-nm thick Ni gate contact
is then defined by EBL and a lift-off process. Fig. 3(b) shows
a scanning electron microscope (SEM) image of a completed
3 x 3 array of GFETs fabricated by the process illustrated in
Fig. 3(a), and Fig. 3(c) shows an optical microscope image of a
typical GFET. The arrow indicates the location of the patterned
graphene sheet underneath the active device region. DC and
RF characterizations were performed using an Agilent Semi-
conductor Device Analyzer and Microwave Network Analyzer,
respectively.

C. Device Performance

A representative transfer curve of a high-performance GFET
on quartz is shown in Fig. 4 with extracted electron mobil-
ity of ~5000 cm?/V-s, using a well-established low-field dif-
fusive transport model [32], [33]. The high-mobility suggests
electrically good quality graphene that is not substantially im-
pacted by the complex device fabrication. The output charac-
teristics of a GFET for frequency multiplication is shown in
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Fig. 4. Transfer curve of a GFET on quartz with 280 nm channel length. The
electron mobility is ~5000 cm?/V-s at room temperature in air extracted from a
well-established low-field diffusive transport model [32], [33] (Vpg = 10 mV).

Fig. 5(a), in good agreement with a circuit model based on val-
idated graphene compact models [34], [35]. The short circuit
current gain |hy;| of a ~500 cm?/V-s mobility GFET is shown
in Fig. 5(b). The device transit frequency f;, including the effects
of all capacitances and contact resistance R, was directly mea-
sured to be 2 GHz at the peak electron transconductance (g,,
~ 13.4 uS/pm at Vgg ~2 V) with Vpg = 2.5 V. The transit fre-
quency can also be calculated as f; = g,,,/27Cox) [3], [7], [11],
where the gate oxide capacitance C,y is ~190 nF/cm?, based
on the transistor dimensions (W/L = 50 ym/0.5 pm) and the
gate dielectric stack [7], [36]. Using this equation, f; is cal-
culated to be ~2.25 GHz, in close agreement with the mea-
sured value, indicating the weak effect of parasitic substrate and
fringe capacitances, a direct benefit of using insulating quartz
for high-frequency applications. Mobility improvements via ro-
bust nondetrimental graphene postgrowth transfer will propor-
tionately increase the device speed. For example, a mobility
of 10 000 cm?/V-s for the given GFET will result in an f;
~40 GHz. This is remarkable because of the high extrinsic f;
which is actually accessible for circuits, in contrast to the often
reported intrinsic f; which is an idealized metric. The maximum
oscillation frequency f,,.x Was also measured (not shown) to be
~1.8 GHz.

III. GFET FREQUENCY DOUBLER
A. Experimental Performance

Fig. 6(a) shows the circuit schematic of a GFET frequency
doubler, and Fig. 6(b) is the oscilloscope display, with clear
evidence that the output (2 MHz) is oscillating at twice the input
frequency (1 MHz). The device is biased at the Dirac point for
maximum frequency doubling based on the intrinsic electron—
hole symmetry [2]-[5]. The spectrum analyzer output shown in
Fig. 6(c) confirms frequency doubling for an input frequency
of 10MHz and also illustrates the high spectral purity of the
output signal for the GFET doubler, where more than 90% of the
output power is at the doubled frequency. All other harmonics
are >10x lower. Fig. 7(a) shows the output power of the doubled
signal with a measured small-signal slope ~20 dB/decade, as
expected of ideal square-law ambipolar devices. Fig. 7(b) is the
conversion gain (Pout,2/Pin,1f, Where Piy 15 and Poy 2y are
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Fig. 5. (a) Output characteristics of the GFET multiplier in good agreement
with a compact model based on prior work [34], [35]. Vg varies from 0-2 V in
0.5 V steps. The validated compact model including nonidealities enables device
and circuit performance assessment. (b) Measurement of the current gain of the
GFET multiplier. The measured f; is ~2 GHz including all the device intrinsic
and extrinsic capacitances (Vpg = 2.5V and W/L = 50 pm/0.5 pim).

the input and output powers at the fundamental and doubled
frequency, respectively) of the GFET frequency doubler. Both
the output power and conversion gain are in strong agreement
with the compact circuit model, revealing up to —23 dBm of
available power.

A primary metric for analog circuits is the —3-dB frequency
(f—3ap), which represents the actual frequency bandwidth in
practical circuit implementations. The GFET doubler’s fre-
quency response presented in Fig. 8 reveals f_3qp = 3 GHz,
the highest bandwidth achieved for GFET frequency multipli-
ers. The bandwidth, presently limited by low mobilities and
contact resistance is expected to be at least 10x higher in the
intrinsic limit based on reports of a similar experimental GFET
with 500-nm channel length [7].

B. Maximum Theoretical Conversion Gain

The conversion gain and output power of the GFET frequency
doubler are presently limited by R., which is extracted to be
~290 €2, on the order of the channel resistance at the Dirac
point (Rpiac = 317 €2). The same graphene transistor with neg-
ligible contact resistance can provide a 10x improvement in the
conversion gain [see Fig. 9(a)]. We employ our validated circuit
model to determine the maximum conversion gain achievable,
currently the most pressing question related to graphene am-
bipolar frequency multipliers. In the theoretical limit of an ideal
GFET with: 1) vanishing R, and impurity carriers, 2) perfect
electron-hole symmetry, and 3) saturation velocity bounded by
the Fermi velocity (~10% cm/s), the maximum conversion gain
approaches a near lossless (~—1.5 dB) performance as the gate
oxide capacitance C,y 1S scaled into the quantum capacitance
C, regime (Cox > C,) as shown in Fig. 9(b). This indicates
that a 1000x improvement is possible compared to existing
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based on electron-hole symmetry, the device is biased at the Dirac point. The L and C network are necessary to route the dc and ac signals separately at the output.
(b) Real-time oscilloscope output showing GFET frequency doubling at 2 MHz. (c¢) Spectrum analyzer output with 10 MHz input frequency and 0 dBm power.
More than 90% of the output power is at the doubled frequency. All other harmonics are more than 10x lower than the doubled signal.
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GFET frequency doubler with good agreement to graphene circuit model. The
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devices. The GFET is biased at Vpirac = 1.4V and Vpg = 2 V. The input
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Fig. 8. Measured frequency response of the normalized conversion gain (CG)
of the GFET frequency doubler. The straight line is the standard Bode guide for
extracting the bandwidth. The extracted bandwidth is 3 GHz, a record bandwidth
for GFET frequency multipliers. The GFET is biased at Vpirac = 1.4V and
Vpg = 2V and device W/L = 50 pm/0.5 pm.

experimental achievements in 50 ) systems, and motivates the
need for significant further device research and fabrication opti-
mization. To place these results in perspective, the near lossless
frequency doubling is >2x higher than an ideal varistor dou-
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Fig. 9. (a) The simulated impact of R. on the conversion gain of the ex-

perimental GFET frequency doubler. Circuit simulations indicate about 10x
improvement in the maximum conversion gain if R, were negligible compared
to the channel resistance. For the experimental GFET, R. ~ 290 2 and the
channel resistance is ~317 2. (b) Circuit simulations of the maximum conver-
sion gain of an ideal GFET frequency doubler with scaled mobility and oxide
capacitance revealing near lossless conversion gain in the quantum capacitance
limit (Cox > Cy). Cqo (~8.4 fF/um?) is graphene’s equilibrium quantum
capacitance, a useful reference for normalizing Cox .

bler, and comparable to an ideal varactor doubler, albeit without
the inherent narrowband limitation of varactors.

IV. EXPERIMENTAL GFET DETECTOR RESPONSIVITY

The current responsivity (Alp/AP;y, 1) or sensitivity of the
GFET to input RF signals is reported in Fig. 10(a). The respon-
sivity, a key metric for frequency detector and direct-conversion
wireless receivers is measured to be ~25.2 pA/mW. Simulated

removal of R, results in >5x improvement of the responsivity
[see Fig. 10(b)].
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Fig. 10.  (a) Experimental GFET detector responsivity (Alp /APy, 1) mea-
sured for the first time. The input frequency is 10 MHz and the GFET is biased
at the Dirac point for maximum rectification of ac signals. The dashed line is
a visual guide. (b) Circuit simulation of the performance benefits available by
minimizing contact resistance. The responsivity improves by more than 5x by
scaling down R, from 290 €2 to values much smaller than the channel resistance
(~317 Q).

V. CONCLUSION

In summary, a record 3-GHz experimental graphene fre-
quency doubler employing the intrinsic electron-hole symmetry
has been reported on low capacitance, smooth crystalline quartz
substrates. The 3-GHz operating bandwidth exceeds the device
fi by 50%, indicating that graphene multiplier circuits can sub-
stantially exceed the device transit frequency. In the limit of
vanishing device nonidealities, we uncovered that near lossless
frequency multiplication is possible, making optimized GFETSs
an attractive device for frequency multiplication at sub-THz
frequencies beyond the frequency capability of conventional
solid-state FETs.
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